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LETlXR TO THE EDITOR 

Rigorous results in equilibrium statistical mechanics of 
terrestrial ecosystems 

J Messer 
lnstitut fur Theoretische Physik, Universitiit Giittingen, Bunsenstrasse 9, D-W-3400 
Gottingen, Federal Republic of Gennanyt, and Sektion Physik, Thsaretische Physik, 
Universitat Miinchen, Federal Republic of Gemany 
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Abstract. Equilibrium statistical mechanics of terrestrial ecosystems is briefly outlined and 
rigorous results are stated. 

In this brief report on recent results in statistical mechanics of a certain class of 
many-body open systems, we extend the ideas of Kemer (1957, 1959, 1972) (see also 
Goel et a/ 1971), who applied statistical physics to Volterra-Lotka subsystems. We are 
studying instead ecosystems in more generality, and investigate a more general type 
of subsystem dynamics suited to general ecosystems, and attempt to clarify the notion 
of a Gibbs state on these subsystems, which are composed of biological species and 
inorganic substances. From a very abstract but useful point of view, terrestrial ecosys- 
tems are defined here to be maps of subsets of a base manifold into C*-dynamical 
systems of the C*-algebra generated from the Banach space of continuous functions 
on the phase space as common in classical statistical mechanics (see, e.g. Ruelle 1974), 
together with a semigroup of automorphisms (see, e.g. Emch 1972). They are mathemati- 
cally special cases of sheaves of C*-dynamical systems. The phase space is a manifold 
of biotic observables q,, e.g. the logarithms of the biomasses, in tensor product with 
the manifold of abiotic factors, e.g. the logarithms of chemical masses or climatic 
factors. States on the C*-dynamical systems are in algebraic statistical mechanics (see, 
e.g. Emch 1972) elements of the topological dual of the algebra, i.e. they are linear, 
normalized, positive continuous functionals, or measures, often absolutely continuous 
measures, given by a 9, distribution function as weight function. The time evolution 
acts on the algebra and induces, by duality, a time evolution on the state space which 

Subsystems are cells or compartments of the ecosystem, which are large compared 
to the mean free intermolecular collision path, but small compared to the dimension 
of the terrestrial ecosystem. They are therefore assumed to be locally in thermodynamic 
equilibrium with respect to molecular physics. The dynamics of these, e.g. 2n cells, is 
assumed to be given by a Hamiltonian flow on the phase space elements q,, j = 1 , .  . . ,2n. 
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where r is an antisymmetric, non-singular matrix and U is a many-body, or more 
generally, many-cell biophysical interaction energy. This is the most general form of 
Hamilton's equations, because r induces a symplectic structure on the phase space by 
a similarity transformation (see, e.g. Gantmacher 1966). From biological reasoning it 
is straightforward that the biophysical interaction energy U is permutation invariant, 
and, if one-cell potentials are considered only, should diverge linearly in 141 for large 
negative q and diverge for large positive q (Goel et al 1971, Kemer 1957, 1972, Messer 
1992a, b). Since nonlinear oscillations should be essential, one can give a reasonable 
approximation of the general form of the many-cell biophysical interaction energy 

by one-cell potentials through the biophysical anharmonic oscillator interaction energy 

For very general, but differentiable many-cell potentials, e.g., as in (2). we have: 

Lemma 1 .  U is an integral of motion. 

The equations of motion (1) are the Euler-Lagrange equations of a straightforward 
generalization of Kemer's Lagrangian (Kemer 1959). Therefore, the canonical momen- 
tum and the obsewables qi are linearly dependent, and this can be considered as an 
additional conservation law. Thus, we suggest 

WP) ,  ( 4 ) )  = a{uWr-'(P))+ u((q))} (4) 

with a E W, a > 0, but otherwise arbitrary, as Hamiltonians. The system is described 
by doubling the 'configuration space' and introducing momentum variables in the 
second space by the above-mentioned linear relation between momenta and observ- 
ables. The 4n-dimensional tensor product of these two spaces is a possible true phase 
space on which the Hamiltonian dynamics act and confines the motion to a (2n - 
1) -dimensional hypersurface. 

We are able to prove: 

Lemma 2. .Q is a Hamilton function. The Hamilton equations and the equations of 
motion are identical. 

Lemma 3. There are Zn + 1 integrals of motion in W4", (@, E j ;  j = 1,. . . , Zn}, with 

and 
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More details will be presented in a forthcoming article (Messer 1992b). 
A second method to introduce a possible true phase space, uses, as already described 

above, the fact that half of a suitable linear combination of the subsystem observables 
qj are configurations, whereas the other half are canonical momenta, and r as an 
antisymmetric matrix already induces the symplectic structure (see, e.g. Gantmacher 
1966). This theory is an extension of a later theory of Kerner (1964). 

The canonical ensemble is defined by the Gibbs state of the Hamiltonian. The 
Gibbs measure is associated with the weight function 

z-' exp(-P@((p), (4 ) ) ) .  ( 8 )  

At this point our presentation deviates from Kerner's scheme. He bas, at first (Kerner 
1957), simply taken 

i - 1  ".,..-".,,/n\,, 1 0 1  
G A I J - P ~ \ l Y J J J  1 7 1  

as the weight function for Volterra-Lotka interactions, not taking into account the fact 
that the biophysical energy function U ( ( q ) )  does not satisfy the Hamilton equations 
of motion. 

We are able to give two rigorous theories of the canonical state in applying the 
two possible correct phase spaces introduced above. 

Lemma 4. If U(q l  ,..., q2n)=X:ZI uj (q j )  with 

u j ( q ) = i j ( e q - q )  (10) 

i.e. the one-cell potential of a Volterra-Lotka interaction system, then the partition 
function is 

2 = Zildet rl-' (11) 

with 

with Z ( r ) - ' = d ~ / d j  and whereby r(z) denotes the gamma function at z. Similar 
expressions exist for the derived thermodynamic functions of the canonical ensemble 
(Messer 1992b). 

The thermodynamic functions and the probability distribution for the observables 
qj, after tracing out the momenta, are essentially identical to Kerner's expressions for 
both of our two rigorous theories. 

Apart from the very particular Volterra-Lotka interactions, used in lemma 4, one 
has for very general potentials the following results. 
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neorem 5. If the interaction is composed of stable and weakly tempered many-body 
or many-cell potentials, which are elements of the metric cone (Xs,w, de(. , .)), 
introduced by Messer (1977, 1979), then the free energy per cell converges in the 
thermodynamic limit, where n + m and the 'logarithmic biomass volume' diverges in 
the sense of Fisher; however, the ratio approaches the density p. 

The proofs of this and related theorems are given by Messer (1992b). We have 
used topological arguments following equicontinuity with respect to a metric cone of 
interactions introduced by Messer (1977, 1979). 

For the thermodynamic limit of the correlation functions, one has at first the 
particular result: 
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4, or, more generally, if U is composed out of one-cell potentials only, but with finite 
one-cell partition functions, then there exists the thermodynamic limit of the correlation 
functions in the sense of Fisher for every thermodynamic parameter, and coincides 
with those of the product state. 

!n the gene..! cnre one CI"Xl2t expect convergence, becacse ofthe porsib!e existence 
of phase transitions. However, we have succeeded (Messer 1992b) in proving a weak 
version of the Gibbs phase rule, using the topological techniques of metric cones of 
interactions (Messer 1977, 1979). 

Theorem 7. If the potential is a superstable, lower regular and weakly tempered 
many-body, or many-cell potential, element of the metric cone (YCss,LR,w, do( ., ')), 
introduced by Messer (1977, 1979), then the mean canonical correlation functions 
converge weakly, and in the sense of Fisher with respect to a net of diverging 'logarithmic 
biomass volumes', d,-almost everywhere. 

The last theorem is not stated in full precision; however, it will be formulated and 

Empirical curves and forestal measurement data have been compared with the 
theoretical equilibrium distributions (Messer 1992b). From these data one may conclude 
that selection forests are in equilibrium states of the above type. 

This work is supported in part by BMFT, Bonn, Federal Republic of Germany, under 
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