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LETTER TO THE EDITOR

Rigorous results in equilibrium statistical mechanics of
terrestrial ecosystems

J Messer

Institut fiir Theoretische Physik, Universitit Géttingen, Bunsenstrasse 9, D-W-3400
Gittingen, Federal Republic of Germanyt, and Sektion Physik, Theoretische Physik,
Universitéit Miinchen, Federal Republic of Germany

Abstract. Equilibrium statistical mechanics of terrestrial ecosystems is briefly outlined and
rigorous results are stated.

In this brief report on recent results in statistical mechanics of a certain class of
many-body open systems, we extend the ideas of Kerner (1957, 1959, 1972) (see also
Goel et af 1971), who applied statistical physics to Volterra-Lotka subsystems. We are
studying instead ecosystems in more generality, and investigate a more general type
of subsystem dynamics suited to general ecosystems, and attempt to clarify the notion
of a Gibbs state on these subsystems, which are composed of biological species and
inorganic substances. From a very abstract but useful point of view, terrestrial ecosys-
tems are defined here to be maps of subsets of a base manifold into C*-dynamical
systems of the C*-algebra generated from the Banach space of continuous functions
on the phase space as common in classical statistical mechanics (see, e.g. Ruelle 1974),
together with a semigroup of automorphisms (see, e.g. Emch 1972). They are mathemati-
cally special cases of sheaves of C*-dynamical systems. The phase space is a manifold
of biotic observables gq;, e.g. the logarithms of the biomasses, in tensor product with
the manifold of abiotic factors, e.g. the logarithms of chemical masses or climatic
factors. States on the C* -dynamical systems are in algebraic statistical mechanics (see,
e.g. Emch 1972) elements of the topological dual of the algebra, i.e. they are linear,
normalized, positive continuous functionals, or measures, often absolutely continuous
measures, given by a £, distribution function as weight function. The time evolution
acts on the algebra and induces, by duality, a time evolution on the state space which
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Subsystems are cells or compartments of the ecosystem, which are large compared
to the mean free intermolecular collision path, but small compared to the dimension
of the terrestrial ecosystem. They are therefore assumed to be locally in thermodynamic
equilibrium with respect to molecular physics. The dynamics of these, e.g. 2n cells, is

assumed to be given by a Hamiltonian flow on the phase space elements g;, j = ,2n.
Consequently it is of the form
do=-% @, 2-F W
a?T T4 Yag,

t Present postal address.

-
—
[
-
—

0305-4470/92/231311+05507.50 (© 1992 IOP Publishing Ltd



L1312 Letter to the Editor

where ' is an antisymmetric, non-singular matrix and U is a many-body, or more
generally, many-cell biophysical interaction energy. This is the most general form of
Hamilton’s equations, because I' induces a symplectic structure on the phase space by
a similarity transformation (see, e.g. Gantmacher 1966). From biological reasoning it
is straightforward that the biophysical interaction energy U is permutation invariant,
and, if one-cell potentials are considered only, should diverge linearly in |g| for large
negative ¢ and diverge for large positive g (Goel et al 1971, Kerner 1957, 1972, Messer
1992a, b). Since nonlinear oscillations should be essential, one can give a reasonable
approximation of the general form of the many-cell biophysical interaction energy

U(qls"'!qul): i‘ 2 Vk(qin"'!ql'k) (2)

k=1 l=ij<..<ij=2n

by one-cell potentials through the biophysical anharmonic oscillator interaction energy
2n
U=-7 7(g;—e%). (3)
j=1
For very general, but differentiable many-cell potentials, e.g., as in (2), we have:
Lemma 1. U is an integral of motion.

The equations of motion (1) are the Euler-Lagrange equations of a straightforward
generalization of Kerner's Lagrangian (Kerner 1959). Therefore, the canonical momen-
tum and the observables g; are linearly dependent, and this can be considered as an
additional conservation law. Thus, we suggest

H((p), ())={U(a"' T (p))+ U ()} (4)

with a €R, @ >0, but ctherwise arbitrary, as Hamiltonians. The system is described
by doubling the ‘configuration space’ and introducing momentum variables in the
second space by the above-mentioned linear relation between momenta and observ-
ables. The 4n-dimensional tensor product of these two spaces is a possible true phase
space on which the Hamiltonian dynamics act and confines the motion to a (2n—
1)-dimensional hypersurface.

We are able to prove:

Lemma 2. © is a Hamilton function. The Hamilton equations and the equations of
motion are identical,

Lemma 3. There are 2n+1 integrals of motion in R*", {,€;; j=1,...,2n}, with
2n .
@j'—'qj‘“kz (I )i (5)
wa]
and

{@is @j}=2(r—l)ij- (7)
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More details will be presented in a forthcoming article (Messer 1992b).

A second method to introduce a possible true phase space, uses, as already described
above, the fact that half of a suitable linear combination of the subsystem observables
g, are configurations, whereas the other half are canonical momenta, and I' as an
antisymmetric matrix already induces the symplectic structure (see, e.g. Gantmacher
1966). This theory is an extension of a later theory of Kemer (1964).

The canonical ensemble is defined by the Gibbs state of the Hamiltonian. The
Gibbs measure is assoctated with the weight function

Z7" exp(—BHUp), (g))). (8)

At this point our presentation deviates from Kerner’s scheme. He has, at first (Kerner
1957), simply taken
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as the weight function for Voiterra-Lotka interactions, not taking into account the fact
that the biophysical energy function U((q)} does not satisfy the Hamilton equations
of motion,

We are able to give two rigorous theories of the canonical state in applying the
two possible correct phase spaces introduced above.

Lemma 4. 1f U(qy, ..., g2.) =277, 4;(g;) with
u(q)=r(e’—q) (10)

i.e. the one-cell potential of a Volterra-Lotka interaction system, then the partition
function is

Z=Z)detT|™ (11)
with
2n
Zy=11 (12)
i=1
and
zﬁf dg exp(—Bu(9)) = (5:8) "*T(%;B). (13)

The free energy Fw(B), in the limit of an infinite number of cells, is given by

-~
e

BFaiB)= | (4B) In(sB)—InT ()2 () dr (14)
0

with Z(7) '=dr/dj and whereby I'(z) denotes the gamma function at z Similar
expressions exist for the derived thermodynamic functions of the canonical ensemble
(Messer 1992b).

The thermodynamic functions and the probability distribution for the observables
g;, after tracing out the momenta, are essentially identical to Kerner’s expressions for
both of our two rigorous theories.

Apart from the very particular Volterra-Lotka interactions, used in lemma 4, one
has for very general potentials the following results.
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Theorem 5. If the interaction is composed of stable and weakly tempered many-body
or many-cell potentials, which are elements of the metric cone (¥swr,d,(-,)),
introduced by Messer (1977, 1979), then the free energy per cell converges in the
thermodynamic limit, where n- o0 and the ‘logarithmic biomass volume’ diverges in
the sense of Fisher; however, the ratio approaches the density p.

The proofs of this and related theorems are given by Messer (1992b). We have
used topological arguments following equicontinuity with respect to a metric cone of
interactions introduced by Messer (1977, 1979).

For the thermodynamic limit of the correlation functions, one has at first the
particular result:
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4, or, more generally, if U is composed out of one-cell potentials only, but with finite
one-cell partition functions, then there exists the thermodynamic limit of the correlation
functions in the sense of Fisher for every thermodynamic parameter, and coincides
with those of the product state.
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of phase transitions. However, we have succeeded (Messer 1992b) in proving a weak
version of the Gibbs phase rule, using the topological techniques of metric cones of
interactions (Messer 1977, 1979).
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Theorem 7. If the potential is a superstable, lower regular and weakly tempered
many-body, or many-cell potential, element of the metric cone (Fssyr wr,d, (", ")),
introduced by Messer (1977, 1979), then the mean canonical correlation functions
converge weakly, and in the sense of Fisher with respect to a net of diverging ‘logarithmic
biomass volumes’, d,-almost everywhere.

The last theorem is not stated in full precision; however, it will be formulated and
gxp!ained in more detail in a f'nrfhr'nm1nn article (Messer 1992b).
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Empirical curves and forestal measurement data have been compared with the
theoretical equilibrium distributions (Messer 1992b). From these data one may conclude
that selection forests are in equilibrium states of the above type.

This work is supported in part by BMFT, Bonn, Federal Republic of Germany, under
project no QFEF 2019-3, nart PM 5. The content is due to the author,
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